Some results on integral sum graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On integral sum graphs

A graph G is said to be an integral sum graph if its nodes can be given a labeling f with distinct integers, so that for any two distinct nodes u and v of G, uv is an edge of G if and only if f (u) + f (v) = f (w) for some node w in G. A node of G is called a saturated node if it is adjacent to every other node of G. We show that any integral sum graph which is not K3 has at most two saturated ...

متن کامل

On integral sum graphs

A graph is said to be a sum graph if there exists a set S of positive integers as its node set, with two nodes adjacent whenever their sum is in S. An integral sum graph is defined just as the sum graph, the difference being that S is a subset of 2~ instead of N*. The sum number of a given graph G is defined as the smallest number of isolated nodes which when added to G result in a sum graph. T...

متن کامل

Some Results On Q-Integral Graphs

We consider the problem of determining the Q–integral graphs, i.e. the graphs with integral signless Laplacian spectrum. First, we determine some infinite series of such graphs having the other two spectra (the usual one and the Laplacian) integral. We also completely determine all (2, s)–semiregular bipartite graphs with integral signless Laplacian spectrum. Finally, we give some results conce...

متن کامل

Regular integral sum graphs

Given a set of integers S; G(S) = (S; E) is a graph, where the edge uv exists if and only if u+ v∈ S. A graph G = (V; E) is an integral sum graph or ISG if there exists a set S ⊂ Z such that G=G(S). This set is called a labeling of G. The main results of this paper concern regular ISGs. It is proved that all 2-regular graphs with the exception of C4 are integral sum graphs and that for every po...

متن کامل

Some New Results on Sum Divisor Cordial Graphs

Abstract. A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V to {1,2,...,| ( ) |} V G such that each edge uv assigned the label 1 if 2 divides ( ) ( ) f u f v + and 0 otherwise. Further, the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a sum divisor cordial labeling is called a sum divisor cordial grap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2001

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(00)00118-7